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Executive summary
This guide is a methodological companion of the report “Towards a Human-Centric Internet:
Challenges and Solutions”. The main goal of this study is to develop a visualization tool
enabling the exploration of key technology challenges and related policy issues. Based on a
text-mining methodology, we have examined and identified the specific topics discussed in a
wide range of written media shared on social media platforms.

In this methodological guide, we describe various methods that could be used to
automatically generate topics, optionally augmented with expert analysis. Later, we present
how these methods can be benchmarked to find the one most suitable for our NGI dataset
and its umbrella topics. The benchmarking method is based on a labeled news dataset:
Reuters-21578. We examine how various unsupervised topic detection methods (Latent
Dirichlet Allocation, Pachinko Allocation, t-SNE, doc2vec, SVD and bag-of-words, combined
with suitable clustering algorithms such as k-means, Gaussian mixtures, and HDBSCAN)
perform on this dataset.

We show the results and justify the choice of the model: t-SNE embeddings clustered with
Gaussian mixtures. We also demonstrate that HDBSCAN clustering is a robust alternative to
expert analysis, although with some demonstrable disadvantages. The main report presents
a description of all narrow topics identified, as well as a deep dive into one umbrella topic. In
this report, the descriptions of umbrella topics focus on the similarities and differences
between the main and the alternative methods of assigning topics. The interactive results
presenting both methods are available online: https://ngitopics.delabapps.eu.

Disclaimer :  The  information  and  views  set  out  in  this  report  are  those  of  the  author(s)  and  do  not 
 necessarily  reflect  the  official  opinion  of  the  European  Union.  Neither  the  European  Union  institutions 
and  bodies  nor  any  person  acting  on  their  behalf  may  be  held  responsible  for  the  use  which  may  be 
 made   of   the   information   contained   herein.  
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Introduction to topic modelling
Our main goal is to identify narrow topics discussed online within each of the six wide
umbrella topics . These specific topics are unknown, as our datasets contain thousands of1

documents without labels. One way to solve this problem is by reading these articles and
assigning the topics manually. However, especially in the case of a large number of articles a
human cannot perform this task well: not only is reading speed limited to a few hundred
words per minute, but also our memory is imperfect. Topic modelling methods, however, can
produce good-quality topics within a few seconds or minutes – depending on computing
power, dataset size, and the chosen method. Topic modelling assigns a topic or multiple
topics with given probabilities to a document. Therefore, such models are apt to find general
themes in large collections of articles.

The grouping or clustering of documents can be performed in various ways. Giving such a
task to various humans would yield us multiple different groups of clusters. Similarly, various
algorithms have different ideas regarding what constitutes an optimal model. They may
disagree on fundamentals: for example, should the clusters be of a similar size? The same
algorithm with other settings can return vastly different clusters. The single best algorithm
performing well regardless of dataset and metric may not exist. Still, we can test multiple
algorithms with various settings on a labeled dataset which we know is similar to the
dataset with unknown topics we attempt to cluster. It is likely that the superior method on
the labeled dataset will generalize well to the other datasets.

Generative statistical models
One of the most widely used topic modelling methods is Latent Dirichlet Allocation (LDA). It
is based on the assumption that topics can be represented by distribution over words, and
documents – over topics (Blei et al., 2003). The generative process begins with drawing a
Dirichlet distribution over topics, later it draws a topic index for each word, and finally draws
the word from the topic (Hoffman et al., 2010). The iterative process assigns words to
different topics until it finds a steady state. Finally, LDA provides us with shares of topics for
each document. The corpus-level parameters in the tomotopy Python package we used are
alpha and eta: the former determines the document-topic Dirichlet distribution and the latter
concerns topic-word distribution.

Li and McCallum (2006) introduced Pachinko Allocation (PA), with a purported advantage
over LDA in ”discover[ing] a large number of fine-grained, tightly-coherent topics”. It is a
generalized form of LDA which can find smaller topics within larger topics, comparable to
hierarchical LDA or Correlated Topic Model (CTM), but with some advantages over them.
CTM’s flaws include quadratic complexity with regards to the covariance matrix parameter

1 The umbrella topics are Environment, Sustainability & Resilience, Decentralising Power & Building
Alternatives, Public Space & Sociality, Privacy, Identity & Data Governance, Trustworthy Information
Flows, Cybersecurity & Democracy, Access, Inclusion & Justice. You can read more about our take on
them in https://ngitopics.delabapps.eu/report.pdf.
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estimations, and hierarchical LDA is less flexible in topic path sampling (Li and McCallum,
2006). The tomotopy parameters for PA are corresponding to LDA, with an additional
parameter of subalpha: alpha for sub-topics.

A naı̈ve way of assigning a single topic to a document is assigning the topic with the highest
probability, as used in multiple research papers in recent years (Curiskis et al. (2020), Hagen
(2018), Asghari et al. (2018), Jędrzejowicz and Zakrzewska (2017)). Another way is using a
clustering technique (Bui et al., 2018), as the document is assigned to several topics with
given probabilities and clustering joins together documents assigned to these topics in a
similar way. We will explore clustering algorithms in the next section.

Clustering algorithms
Clustering algorithms can be broadly split into distance-based (such as K-means and
CLARA/CLARANS) and density-based (DBSCAN/HDBSCAN) (Güngör and Özmen, 2017).
Density-based clustering searches for areas with a high density of observations, which are
separated by low-density areas (Kriegel et al., 2011). Simpler methods take into account only
distance between observations (Patra et al., 2011) – observations which are close to each
other are in the same cluster regardless of whether they are separated by an empty space or
by a region dense with observations.

K-means finds K clusters, minimizing the squared distances between points and centroids of
the cluster (Hackeling, 2017). First, each data point is assigned to the nearest of the K
means – which are initially random. Second, the means are updated to be equal to the mean
of the points in their cluster. The two steps are repeated until the steady state is reached
(MacKay, 2003). Gaussian mixtures are a generalized case of k-means (Lücke and Forster,
2019), which use an expectation-maximization algorithm and can find overlapping clusters.
Components are modeled using a multivariate normal distribution, initialized with k-means
(Ouyang et al., 2004). A similarity between k-means and Gaussian mixtures is the
importance of initial optimization settings (Su and Dy, 2007), but initialization algorithms
effective in real-life applications – like k-means++ – were proposed (Arthur and Vassilvitskii,
2007) and are commonly used.

DBSCAN, introduced by Ester et al. (1996), is the oldest density-based clustering algorithm
(Khan et al., 2014). It considers observations which are within a given distance denoted by
epsilon to be connected. If the number of such observations is below the set threshold, the
observation is assumed to be noise (Schubert et al., 2017). Noise is the part of the input to
the algorithm which is meaningless and does not generate insights. The algorithm promises
to be applicable in high-dimensional settings with noise (Khan et al., 2014). Early
improvements of the algorithm focused on computational speed (El-Sonbaty et al., 2004),
but also robustness to hyper-parameters (Yu et al., 2005). McInnes et al. (2017) published
HDBSCAN library, which apart from low sensitivity to hyper-parameters has the advantage of
allowing for clusters of different densities by “perform[ing] DBSCAN over varying epsilon
values”.
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Dimensionality reduction
Recent developments in natural language processing suggest that methods based on word
embeddings or dimensionality reduction can result in more accurate classification of
documents than generative statistical models. However, such methods do not produce lists
of topics and topic words, but more abstract vector representations of documents.
Therefore, in order to form the groups of documents, such techniques must always be used
with a clustering algorithm for this purpose.

Bag-of-words matrices inform how often a particular word appears in a document. Their
drawbacks include disregarding grammatical structure (Verberne et al., 2010), but it does not
preclude them from being used in a topic modelling context (Blei et al., 2003). Instead of
pure counts of words in documents, usually tf-idf transformation – a product of the number
of occurrences of a term in the document and logarithm of the number of all documents
divided by the number of documents in which the term occurs. In the framework of
information theory, it means ”the amount of information of a term weighted by its
occurrence probability” (Aizawa, 2003). Bag-of-words matrices are sparse, containing zeros
in a vast majority of the rows. Computational constraints and characteristics of various
models call for effective transformation of this high-dimensional matrix to a
lower-dimensional space, while maintaining as much information about the observations as
possible. Clustering algorithms are not as effective on a bag-of-words matrix as on a smaller
matrix with a reduced number of dimensions.

Singular value decomposition, based on the work of Beltrami and Jordan among others
(Stewart, 1993), decomposes a matrix A into a product of three matrices U, Σ, and V
transposed. U and V are unitary matrices, which means that the product of the matrix and its
transpose is an identity matrix, and Σ is a diagonal matrix (Golub and Reinsch, 1971). After
discarding all but k largest singular values from the Σ matrix, we get the best least-squares
k-dimensional approximation of the original matrix. This is the base for Latent Semantic
Analysis (Dumais, 2004), which aims to find associations between documents (Hofmann,
2013). LSA performs poorly on a very low and very high number of dimensions – its peak
performance is achieved near 300 dimensions (Landauer et al., 1998).

Van der Maaten and Hinton (2008) presented t-distributed Stochastic Neighbor Embedding
(t-SNE), which has grown to be one of the most often used unsupervised learning techniques
in multiple fields, such as data about a single cell (Zhou and Jin, 2020). t-SNE does not suffer
from the ”crowding problem” of its predecessor (SNE). The problem causes points close to
each other in the high-dimensional space to be put too far from each other in the
low-dimensional representation. A low-dimensional distribution with heavier tails, in t-SNE’s
case t-distribution, is a computationally effective solution to the problem. t-SNE applied on
text data may deliver well-separated clusters like in Sikorskiy et al. (2018), although clusters
can be misleadingly found by t-SNE also in random data (Wattenberg et al., 2016). Typically,
t-SNE is used to reduce the number of dimensions to 2 or 3 with non-interpretable axes.
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Perplexity is the crucial hyperparameter in t-SNE. Van der Maaten and Hinton (2008) claim
that t-SNE is “fairly robust to changes in perplexity”, although others argue that manual or
automatic work in selecting the optimal perplexity is usually required (Cao and Wang, 2017).
Interpretation of perplexity is a measure of “the effective number or neighbors” (Van der
Maaten and Hinton, 2008). The larger the perplexity, the more neighboring observations are
taken into account, so the global structure becomes more important (Wattenberg et al.,
2016) at the cost of local structure.

Kobak and Berens (2018) suggested to first run t-SNE on high perplexity settings to find
global structure and use the output as initialization for low perplexity settings – the process
they call perplexity annealing, which achieves slightly better results than initialization with
PCA. Their later work (Kobak and Berens, 2019) uses perplexity averaging based on Lee et al.
(2015) and available in t-SNE implementations. Perplexity averaging uses a multi-scale
kernel (Koban and Berens, 2019):

Finding the right way to gain insights from t-SNE is more art than science. Some issues are
clusters which are not clearly separable (especially with low perplexity) and meaningless
distances between clusters despite clear connection in data (Wattenberg et al., 2016). In
order to put observations into separate clusters, using a clustering algorithm is required.
Despite the fact that in t-SNE distances between points are ignored in favor of joint
probabilities both in high-dimensional and low-dimensional spaces (Van der Maaten and
Hinton, 2008), which may deteriorate results of distance-based clustering, methods such as
k-means are used in various applications in conjunction with low-dimensional embeddings.
These applications include tumor prognosis (Abdelmoula et al., 2016), safety decision
support systems (Dhalmahapatra et al., 2019), partial discharge faults (Kumar et al., 2020),
and SARS-CoV-2 mutation datasets (Hozumi et al., 2021).

Document vectors
Word embeddings assign a multi-dimensional vector to each word. Arithmetic operations on
vectors can be performed: a well-known example is king + woman - man = queen. The
similarity of vectors can be calculated using the cosine function, enabling the analysis of
related terms. Mikolov, Chen, Corrado and Dean (2013) introduced word2vec, which
“preserve[s] the linear regularities among words”. There are two architectures proposed:
continuous bag-of-words, which predicts the word based on its nearest surroundings; and
more commonly used continuous skip-gram, which predicts the word’s nearest surroundings
based on the word. The model is based on Feedforward Neural Net Language Model
(NNLM), but with the hidden layer removed and the “projection layer shared for all words”
– only the input and output layers are left unchanged. The removal of the hidden layer
significantly reduces the computational cost.

Documents consist of words, but how to get document meaning from (or using) word
vectors is not straightforward. Early approaches like averaging words or matrix-vector
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operations to combine vectors with parsing were superseded by doc2vec, introduced by Le
and Mikolov (2014). The output of doc2vec consists not only of word vectors but also of
vectors that represent a paragraph or a document. The method does not have limitations
regarding text length or the necessity to use tuning or parse trees, and combines classifying
a random sample of words based on paragraph token (distributed bag-of-words) with a
model similar to continuous bag-of-words, but with another token representing the
paragraph. The authors find that doc2vec is a state-of-the-art solution with only 3.82% error
rate compared to 8.10% for a bag-of-words model on an information retrieval task.
Performance on sentiment analysis on reviews from Rotten Tomatoes and IMDB is also
superior to traditional approaches like Support Vector Machines and other types of neural
networks. Other authors also find that doc2vec is a robust solution for document clustering:
in patent clustering, Kim et al. (2020) use k-means on Doc2vec achieving an accuracy of
0.3548, close to a proposed non-standard technique of deep embedded clustering (0.3714).
Zhang et al. (2018) use the output of doc2vec to cluster descriptions of Web APIs with
k-means, achieving superior results to i.a. the combination of LDA with k-means.
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Reuters analysis

In order to ascertain what the optimal method is, we need ground truth: the desired
classification outcome. We have no valuable ground truth regarding topics in our datasets,
as classification schemes vary between websites, if a website uses categories at all.

There are multiple labelled datasets used in the literature. Examples of the most common
ones are 20newsgroups and Reuters, another dataset notable for including news articles is
BBC News (Greene and Cunningham, 2006). Their goal is to provide comparable
environments for testing machine learning methods, both supervised and unsupervised.
Values of a chosen metric are then compared to ascertain which method prevails. Results
are reproducible and characteristics of a dataset are known, allowing other researchers to
build on methodology.

BBC News consists of 2225 news articles: the five categories included are business,
entertainment, sport, politics, and tech. They are fairly balanced and easily separable, so we
rejected it for being too simple: there is not enough challenge to distinguish between
well-performing and poor-performing algorithms.

The 20newsgroups dataset contains 18846 posts from 20 Usenet groups. Cleaning of the
dataset can be done in multiple ways. Removing headers is obvious and easy to perform
precisely, but removing footers and quotes is imprecise and results in many empty
documents. There are no standardized rules of writing in Usenet groups. Some terms are
very specific to a particular target group and are rarely used otherwise. Moreover, while the
target groups are balanced, some of them are close in theme to each other, while others are
highly dissimilar: there are five computing groups, including two very similar groups
(comp.os.ms-windows.misc and comp.windows.x), two groups on religion (alt.atheism and
soc.religion.christian), and only one group on medical science – although there are four
scientific groups in total.

Our chosen approach is to test the clustering methods on the Reuters dataset . It has been2

used in machine learning research since the 90s. Applications of the Reuters dataset range
from classical papers on traditional ML algorithms like Support Vector Machines (Dumais,
1998) or Bayesian probabilistic generative models (McCallum & Nigam, 1998) to gradient
boosting (Zdrojewska et al., 2018) and novel term weighting strategies (Dogan and Uysal,
2020). Its properties resemble our datasets: it has multiple topics of unequal size, contains
technical terms, and it is not too sensitive to cleaning methods or prone to volatile results.

If at least 80% of articles in a category belonged to another category, these categories were
merged. After this procedure, articles which belong to more than 1 category or to a category
with less than 10 articles were discarded. In the final Reuters dataset, 9096 articles are split
into 44 categories.

2 https://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
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In our experiment, we can compare the 44 groups created by the tested methodologies to
the 44 ground truth groups. We treated the testing as an unsupervised problem: the labels
were hidden from the algorithm. The only information the algorithm was given was the
number of desired clusters, equal to the number of ground truth categories.

There are multiple metrics which measure the quality of the assignment. The assignment is
a multiclass problem (there are more than 2 classes), but not a multi-label problem – there is
only one target class per document. Consequently, precision (ratio of true positives to the
sum of true positives and false positives: a positive in a ground truth topic is a document
located in a cluster which is assigned to the topic) can be defined in three basic ways:

- micro-average: precision is calculated “globally”. All true positives are added together
and divided by the sum of all true positives and all false positives (i.e. the number of
all articles). This method checks for the largest number of articles correctly assigned,
but the importance of small groups is low.

- macro-average: precision is calculated for each class separately. The final
macro-averaged precision is the arithmetic mean of all precision values in classes.
All classes are equally important.

- weighted: precision is also calculated for each class separately. The final weighted
precision is the average of precision values weighted by the number of articles in
each class: the number of true positives (articles assigned to a correct cluster) and
false negatives (articles assigned to an incorrect cluster). This is a compromise
approach, which assigns more importance to larger classes like micro-average, but
does not treat large and small classes equally like macro-average.

Two other methods commonly used in the literature on multiclass classification are adjusted
Rand index (ARI) and Normalized Mutual Information (NMI). ARI is defined (Santos &
Embrechts, 2009) as:where TP is the number of true positives, FP – false positives, FN –
false negatives, and TN – true negatives. ARI’s goal is to compute similarity between two
partitions of a dataset. If one of the partitions is the ground truth, it becomes an appropriate
metric. Adjustment for chance takes place so that independent random labelling results in a
value close to 0 and partitioning identical to the ground truth returns 1.

NMI is an information-theoretic measure based on Shannon entropy. Entropy is based on
probabilities that randomly chosen nodes are assigned to particular classes. The formula for
mutual information is (Emmons et al. 2009):

It is further normalized to the range between 0 and 1 to be comparable with other metrics.
All metrics are computed using the scikit-learn Python library (Pedregosa et al. 2011).
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A further consideration is how to match the ground truth groups to the new clusters.
Naturally, the 44 clusters produced by the algorithm contain combinations of articles that are
in different ground truth groups. Assigning clusters to ground truth topics can be done in two
ways. The simpler one is assigning them to the best group overall -- if in a cluster there are
300 documents in group A, 200 documents in group B and 150 documents in group C, it is
always assigned as representing group A. However, one could argue that if there are n
clusters and n categories, the function assigning groups should be bijective, i.e. if there was
already a larger cluster of documents which all belong to group A, the formerly described
cluster should be assigned to B. Such assignment is done using Kuhn-Munkres (KM)
algorithm. Naturally, algorithms achieve higher micro-averaged precision scores with the first
method, although not necessarily with the macro-averaged and weighted precision: results
will be worsened by zero precision for some ground truth groups. As described in the next
sections, the two methods of assignment will differently affect the various clustering
methods. HDBSCAN works better with KM, as it produces unevenly-sized clusters. On the
other hand, distance-based k-means and Gaussian mixtures can assign articles from a large
topic to a few different clusters. However, with Kuhn-Munkres assignment, a cluster can be
assigned to a topic only once, which means that even when the clusters are perfectly
consistent and contain one topic only, only the largest cluster will match the ground truth,
while the smaller clusters will be wrongly assigned to different ground truth topics. As the
differences in cluster sizes are small in distance-based methods, they will be at a
disadvantage.

There is randomness inherent in the methods. Initialisation influences distance-based
clustering and generative statistical models. We compute 15 iterations for seeds ranging
from 0 to 14 (inclusive) and take the mean score of a particular metric across iterations as
the final result. It reduces randomness and allows for reproducibility.

The methods we tested on the dataset are the following:

- Bag-of-words (word count / tf-idf) + k-means; SVD normalized / not normalized +
k-means / Gaussian mixtures. The high-dimensional matrices are not applicable for
other clustering algorithms than k-means due to computational complexity. These
matrices lose as little information as possible: only the word order is ignored. The
bag-of-words matrices are tested in two ways: untransformed and transformed by
tf-idf. The matrix from SVD is used in two versions: not normalized and normalized to
unit norm. Both versions of the SVD matrix are clustered with two distance-based
clustering methods.

- t-SNE (single perplexity / perplexity annealing / perplexity averaging) + k-means /
Gaussian mixtures / HDBSCAN. Single perplexities range from 5 to 150, covering a
larger range of perplexities than suggested by van der Maaten and Hinton (2008).
Kobak and Berens’ perplexity annealing and averaging was also used. Perplexity
annealing ranged from 20-5 to 300-150; equivalent values were used for averaging.
Additionally, averaging with one or two yet smaller perplexity values was tested, to
bring the average down and more in line with single perplexity values. For example,
for the 20-5 case perplexity 2 was added, while for 300-150 – 10 and 2. (See
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Appendix A1 for a full list of perplexity settings.) HDBSCAN does not allow for setting
the number of clusters explicitly, but has a few parameters related to it, such as
minimum cluster size (mcs). The optimal value of this particular parameter is
proportional to the size of the dataset. To get clusters, we either use the default
method (labels_ of the HDBSCAN object) or get_clusters method of the single linkage
tree if there are more clusters than ground truth topics. The optimal epsilon value is
chosen to bring the number of clusters as close to 44 as possible. Values of
minimum_cluster_size and epsilon parameters (varying across iterations) are in
Appendix A2.

- Doc2vec + k-means. Vector sizes we tested are 10, 15, 25, 50, 75 and 100. The higher
the number of epochs, the better the results, but the improvement is lower and lower
with each additional epoch. The number of epochs ranges from 300 to 500 in
increments of 25. Document vectors of particular size are then clustered with
k-means for similar reasons as SVD and bag-of-words matrices.

- LDA / PA + maximum assignment (naïve) / k-means. Both LDA and PA models were
used with default settings from tomotopy Python package. The numbers of topics we
tested are 44 (equal to the number of ground truth topics), 50, 60, 80 and 100. The
lowest number of topics was used for the naive assignment method; all resulting
probabilities matrices, also for 44 topics, had k-means applied to them.

Table 1 presents the five methodologies with the highest precision, calculated for each
combination of ground truth assignment (maximum or KM) and the five (the remaining ones
are presented in Appendix A3) measures for precision:

Table 1. Best mean results of particular methods on a given dataset

ranking 1 ranking 2 ranking 3 ranking 4 ranking 5

Kuhn-Munkres
micro-averaged

precision

t-SNE
HDBSCAN
(0.5623)

PA naive
(0.3146)

SVD
(0.3133)

LDA naive
(0.3054)

t-SNE
Gaussian
(0.2666)

maximum
micro-averaged

precision

t-SNE
Gaussian
(0.8045)

SVD (0.8043) t-SNE
k-means
(0.8029)

t-SNE
HDBSCAN
(0.795)

PA naive
(0.7638)

Kuhn-Munkres
macro-averaged

precision

t-SNE
HDBSCAN
(0.3536)

SVD (0.2725) t-SNE
k-means
(0.2406)

t-SNE
Gaussian
(0.24)

PA
k-means
(0.2377)
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maximum
macro-averaged

precision

t-SNE
HDBSCAN
(0.3302)

SVD (0.2474) t-SNE
Gaussian
(0.2102)

t-SNE
k-means
(0.2035)

PA
k-means
(0.1988)

Kuhn-Munkres
weighted
precision

SVD
(0.828)

t-SNE
HDBSCAN
(0.8279)

t-SNE
k-means
(0.8184)

t-SNE
Gaussian
(0.8169)

LDA
k-means
(0.8095)

maximum
weighted
precision

SVD
(0.7752)

t-SNE
Gaussian
(0.7658)

t-SNE
k-means
(0.7647)

t-SNE
HDBSCAN
(0.7582)

PA naive
(0.7189)

Kuhn-Munkres
NMI

t-SNE
HDBSCAN
(0.5644)

t-SNE
Gaussian
(0.5236)

t-SNE
k-means
(0.5233)

SVD (0.5226) PA naive
(0.4986)

maximum NMI t-SNE
k-means
(0.695)

t-SNE
Gaussian
(0.6929)

SVD
(0.6769)

t-SNE
HDBSCAN
(0.6556)

PA naive
(0.6027)

Kuhn-Munkres
ARI

t-SNE
HDBSCAN
(0.4188)

PA naive
(0.2193)

LDA naive
(0.2007)

SVD (0.1526) PA
k-means
(0.1308)

maximum ARI t-SNE
Gaussian
(0.8269)

t-SNE
k-means
(0.8244)

SVD
(0.798)

PA naive
(0.7738)

LDA naive
(0.7734)

We use the following process, taking into account results in Table 1:
- The first method that is clearly rejected is doc2vec. In no metric does it enter the top

5 of best algorithms. Its relatively best results are achieved in Kuhn-Munkres
weighted precision and maximum NMI, but they are still inferior.

- Second, we reject generative statistical models (LDA and PA). Their results are
particularly good with Kuhn-Munkres assignment in micro-averaged precision and
NMI, but for all metrics there exists a preferable topic modelling method. Creating
topics with k-means rarely results in an improvement over the naïve method, and
whenever generative statistical models achieve a good score, it is with the naïve
method.

- SVD delivers a robust performance, but apart from weighted precision (regardless of
assignment method) t-SNE with some clustering algorithm achieves a better result.
Moreover, the difference in Kuhn-Munkres weighted precision between SVD and
t-SNE with HDBSCAN is negligible. Consequently, we should reject SVD.

- We are left with three clustering algorithms using t-SNE embeddings. As expected,
with unevenly-sized clusters, HDBSCAN prevails over distance-based methods with
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Kuhn-Munkres assignment. The difference between distance-based clustering
algorithms, k-means and Gaussian mixtures, is minor. In this work, we want to check
issues arising in the NGI datasets. They are well-structured and concern carefully
selected topics. Had HDBSCAN been a clearly superior method, we would have
chosen it. But as results are comparable and we know that there is little actual noise3

in the NGI datasets thanks to the careful choice of terms in umbrella topics,
distance-based methods are preferred. HDBSCAN’s advantage is identifying the
number of clusters automatically, so we include it as a robustness check for possible
applicability in similar tasks.

It is now necessary to choose optimal settings for the distance-based method. In both NMI
(Table 2) and ARI (Table 3) with maximum assignment method, it is the single-perplexity
t-SNE clustering method which clearly prevails. The optimal perplexity is in the range 50-75.
The two distance-based clustering methods, k-means and Gaussian mixtures, achieve
comparable scores: in ARI, Gaussian mixtures are slightly better, in NMI, the order is
reversed.

Table 2. Maximum NMI best results

Perplexity Perplexity
type

cluster mean std

50 single k-means 0.695013 0.007431

60 single Gaussian mixtures 0.692948 0.011142

75 single k-means 0.690748 0.005370

60 single k-means 0.690212 0.005230

50 single Gaussian mixtures 0.689442 0.005638

Table 3. Maximum ARI best results

Perplexity Perplexity
type

cluster mean std

60 single Gaussian mixtures 0.826931 0.015148

90 single k-means 0.824371 0.010343

75 single k-means 0.823584 0.007872

3 HDBSCAN is worse on maximum assignment method, better on Kuhn-Munkres assignment
method, and while HDBSCAN’s top results are good, there is a large number of settings with
which it performs poorly. Compare Appendix B4 and B5 with C1 and C2 to see higher
stability of distance-based clustering methods.
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50 single k-means 0.822905 0.013291

150-30 annealing k-means 0.822256 0.008979

25 best results (by mean result on all iterations) for each metric are available in Appendices
B1-B10.

The main method will be t-SNE, single perplexity 50, Gaussian mixtures. The difference
between k-means and Gaussian mixtures is usually small, Gaussian mixtures achieve higher
scores in 7 out of 10 available metrics (see Table 1 and Appendix A3), and Gaussian
mixtures may be preferable in some settings due to more information possible to infer,
especially with overlapping clusters. In our work, it makes no difference, but future research
may find this property useful. As we want to distinguish general topics and leave specifics to
expert analysis, we choose 15 as the number of components (clusters) in Gaussian
mixtures. Perplexity is within the optimal range for the Reuters dataset and the clearly
superior result in NMI.

HDBSCAN with a similar embedding and clustering pipeline serves a robustness check in
this deliverable. HDBSCAN’s results on the Reuters dataset are close to distance-based
clustering even with maximum assignment method in weighted and micro-averaged
precision metrics, which shows that it may be strong in identifying small and coherent
clusters. Minimum number of points in a cluster was chosen to be the number of articles in
the dataset divided by 250: in the Reuters dataset, the typical values of minimum cluster size
for best results ranged from 25 to 50. The t-SNE settings from the main pipeline with single
perplexity 50 are suitable for HDBSCAN as well, achieving top or second best results and
being robust to parameter change (see Appendix C1 for NMI and C2 for ARI)

There is no guarantee that the optimal solution for one dataset will be the optimal solution
for another dataset; we can only say that this is our best guess. More importantly though, we
reject solutions which do not work on the Reuters dataset: both those which are reasonable,
but do not work for the particular dataset, and those which simply are not adequate for text
mining purposes in the problem of clustering articles. The latter rejections are crucial.
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Clustering results

A detailed analysis with the main method is presented in the main deliverable, available at:
https://ngitopics.delabapps.eu/report.pdf.

In this chapter, three major insights will be demonstrated:
- HDBSCAN finds the majority of valuable clusters identified by Gaussian mixtures with

expert analysis
- Expert analysis is often superior to automated analysis, as HDBSCAN clusters are

sometimes meaningful
- HDBSCAN noise removal is too aggressive

For each umbrella topic, three groups of clusters will be shown to demonstrate the
respective insight:

- Clusters which are found both by Gaussian mixtures with expert analysis and
HDBSCAN

- Clusters which are found only by one of these methods
- Clusters which are found by Gaussian mixtures with expert analysis, but considered

to be noise by HDBSCAN

Consistency between Gaussian mixtures with expert analysis and HDBSCAN is rather
common. To keep descriptions short, only a few examples will be shown.

In the following sections, the upper chart contains Gaussian mixtures + expert analysis;
while the lower chart is HDBSCAN. Click them to see their interactive version.

Points are positioned on the map according to the t-SNE embedding. Their color represents
the cluster they are assigned to. The color palette is random and the similarity of colors
should not be considered meaningful (e.g. clusters with different shades of green are not
related to each other). Note that articles in the “noise” (meaningless input) cluster in
HDBSCAN were removed from the HDBSCAN chart.

In the case of Gaussian mixtures, the maps present topic tags prepared with expert analysis.
The online versions of maps also include topic keywords that were chosen from the list of 30
top words (ranked by: the number of occurrences in the cluster divided by square root of the
number of occurrences in the whole umbrella topic). The occurrences were counted for the
stemmed (root) form. For clarity, the keywords are words from the dataset which return a
given root form when stemmed. Cluster names were also assigned by expert analysis.

For HDBSCAN, both cluster names and keywords (top 5 words) were chosen automatically.
These automatic topic tags are presented on the maps.
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Environment, Sustainability & Resilience

17

https://ngitopics.delabapps.eu/static/charts/umb/umbrella_climate_50_tagged.html
https://ngitopics.delabapps.eu/static/charts/umb/umbrella_climate_50_hdbscan.html


Both methods
One classical element: “water” (or “water crisis” in expert analysis) is on the bottom of the
chart: in HDBSCAN just over a large cluster “food”.
Blockchain is a cluster which was found by expert analysis and HDBSCAN.
The top contains a cluster related to (renewable) energy surrounded by e.g. aviation,
hydrogen, and battery technologies. Gaussian mixture puts it into one cluster, split into
smaller topicsby expert analysis, HDBSCAN considers them separate clusters.

Only one method
In HDBSCAN, “fire” and “ice” are not only opposite classical elements, but also two topics
placed close to each other on the left. Neither was deemed to be a crucial social topic based
on expert analysis (top), especially as the “fire” topic concerns Australia more generally.
The large HDBSCAN cluster on the bottom about food belongs to two different topics in
Gaussian mixtures. The left part of it concerns agriculture, and the right side is strictly about
food.
A large topic on the right is “right to repair”, common to HDBSCAN and Gaussian mixtures,
split by expert analysis to EU and US parts. Geographical considerations were lost by the
automatic clustering methods. This could be expected: in density-based clustering with a
sufficiently large epsilon, a path between points representing articles can be found. A
smaller epsilon would not be able to distinguish any valuable clusters. In distance-based
clustering, the automatic clusters alone are simply too large.
HDBSCAN topics about “thinking” or the too general “climate” cluster would be better
classified as noise.

Noise
The small manufacturing cluster on the right, found by expert analysis, was deemed to be
noise by HDBSCAN.
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Decentralising Power & Building Alternatives
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https://ngitopics.delabapps.eu/static/charts/umb/umbrella_decentralised_50_tagged.html
https://ngitopics.delabapps.eu/static/charts/umb/umbrella_decentralised_50_hdbscan.html


Both methods
Decentralised identity, open source robotics and decentralised power industry are examples
of clusters found both by HDBSCAN and expert analysis. Fintech disruption was also found
by HDBSCAN. Although its name is “banks”, keywords make it clear that this is a general
fintech cluster.
Left side of the chart has a cluster about China, in HDBSCAN additionally split into a generic
“China” topic and a smaller cluster on Huawei and 5G, which was also found by expert
analysis.

Only one method
The HDBSCAN cluster about “antitrust” at the bottom is surrounded by documents on
Google and Facebook. Expert analysis found that the “antitrust” cluster has a part about EU
policies.
HDBSCAN’s clusters “pitch” and “installation” are rather general and not insightful.

Noise
HDBSCAN wrongly assigned articles near (-25, 40) to noise, despite the fact that they
constitute a clear and meaningful cluster on startups in Africa.
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Public Space & Sociality
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https://ngitopics.delabapps.eu/static/charts/umb/umbrella_public_50_tagged.html
https://ngitopics.delabapps.eu/static/charts/umb/umbrella_public_50_hdbscan.html


Both methods
Blockchain and related cryptocurrency IOTA are on the left side of the chart, next to Dubai,
which invests heavily in new technologies, including blockchain. They were grouped into one
cluster by Gaussian mixtures, but assigned keywords show also these smaller subtopics.
African smart cities were found by HDBSCAN and expert analysis, even though they are in a
noisy environment. Another example of a notably similar cluster is “Islamabad” in the bottom
of the charts. Expert analysis and HDBSCAN found valuable clusters on Toyota’s prototype
city (top left) and cybersecurity in smart cities (5, 35).
The cluster on Alphabet’s smart city project (Sidewalk Labs) is identical in Gaussian
mixtures, expert analysis, and HDBSCAN.

Only one method
The general topic in the middle of the chart has no discernable general topic in HDBSCAN,
although a part of it concerns business models according to expert analysis and
infrastructure in general by Gaussian mixtures.
The HDBSCAN clusters in the middle (“kansas”, “city”, “thinking”) add little value.

Noise
Transportation in smart cities found by expert analysis in the right of the chart belongs to
noise according to HDBSCAN.

22



Privacy, Identity & Data Governance

23

https://ngitopics.delabapps.eu/static/charts/umb/umbrella_privacy_50_tagged.html
https://ngitopics.delabapps.eu/static/charts/umb/umbrella_privacy_50_hdbscan.html


Both methods
In the top of the charts, the cluster on Facebook is notably similar between Gaussian
mixtures and HDBSCAN.
WhatsApp, TikTok and Zoom occupy the left side of the charts. They are grouped by
HDBSCAN and expert analysis in a similar manner.
The topic “Student data privacy” is well visible in both expert analysis and HDBSCAN.

Only one method
Although the similarity between the cluster on Facebook between two automatic methods is
clear, expert analysis in this area is beneficial: the topic about political campaigns, while
strongly connected to Facebook, deserves to be noted.
Gaussian mixtures split the articles on the left side of the charts into two clusters: cyan –
more technical, about encryption; and purple – focused on issues faced by end users in their
daily life: childrearing and work.
Bottom right (closer to center) contains clusters on medical issues: HDBSCAN found contact
tracing and patients or healthcare in general. In expert analysis, the overarching theme of
pandemic was found.
In the top right, the broad “eu” HDBSCAN cluster contains articles about both EU-US Privacy
Shield and post-Brexit GDPR, different topics which deserve their own clusters.

Noise
Articles about Aadhaar, the digital ID assigned to Indian citizens, disappear from the bottom
right of the HDBSCAN chart.
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Trustworthy Information Flows, Cybersecurity & Democracy

25

https://ngitopics.delabapps.eu/static/charts/umb/umbrella_democracy_50_hdbscan.html


Both methods
HDBSCAN and expert clusters on Asian countries (Singapore and Turkey), and online media
in general, are on the left side of the chart.
Bottom right of the HDBSCAN chart contains topics related to China: Taiwan, Hong Kong,
Wuhan (especially censoring information about the coronavirus), facial recognition and
China itself, usually about censorship on social media. They are treated as a coherent group
by Gaussian mixtures. Facial recognition is not an exclusively Chinese issue, keywords for
the HDBSCAN cluster include Clearview, a controversial American facial recognition
company. The overarching theme is correctly found by Gaussian mixtures, while expert
analysis and HDBSCAN provide detailed subtopics.
The “democracy” topic is similar in HDBSCAN and Gaussian mixtures, although Gaussian
mixtures define it a little bit broader, while HDBSCAN considers articles on the outside of the
Gaussian cluster as noise.

Only one method
The expert topic about “section 230” is treated by HDBSCAN as a part of a broader “Trump”
cluster. This cluster is very general, containing articles assigned by Gaussian mixtures to
three separate clusters (USA, copyright issues, hate speech).

Noise
Hate speech in Myanmar, an expert topic on the right of the chart, was classified as noise by
HDBSCAN due to being small.
Some parts of the Gaussian copyrights cluster at the top were deemed to be noise by
HDBSCAN, including proposed Polish legislation on limiting tech companies from banning
content on their platforms and articles about the Parler social network.
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Access, Inclusion & Justice
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https://ngitopics.delabapps.eu/static/charts/umb/umbrella_justice_50_hdbscan.html


Both methods
China is a topic of interest in this group of articles as well, with a general China cluster at the
bottom. Similarly to the “Trustworthy Information Flows, Cybersecurity & Democracy”
umbrella topic, facial recognition is placed close to China, but Gaussian mixtures treat it as a
separate cluster. Large topics found by HDBSCAN can be located also in expert analysis.
A broad cluster on the judiciary system is above the “China” topic. HDBSCAN considers a
part of it as noise, but finds two coherent clusters tagged “court” and “legal” as well. The first
cluster was alsofound by expert analysis.
In the bottom right, there are similar clusters about AI found by Gaussian mixtures and
HDBSCAN, with no further split required by expert analysis. “Ethical coding” is also common
to HDBSCAN and expert analysis, in Gaussian mixtures it is a part of a cluster about
inclusivity, just like “blockchain” forms a part of Gaussian “income inequality” cluster.
Another interesting group of HDBSCAN clusters is located in the top right: clusters on
diversity and women surrounded the cluster on startups. The gender inequality cluster is
very clear in all methods.
Only one method
HDBSCAN clusters in this umbrella topic tend to be small and consistent. One exception is
“black”, the right part of which is a “racial inequality” cluster according to expert analysis.
The left part of it is different: it focuses on art, often (but not exclusively) created by artists
from the Black community, but not particularly concerning social ideas.

Noise
The Palantir controversy regarding American ICE in the bottom right is not visible in the
HDBSCAN chart, due to being a part of the noise cluster.
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Conclusion
Our results present two robust methods of finding clusters of articles. Automatic clustering
with Gaussian mixtures proved to deliver a satisfactory general overview of umbrella topics,
while expert analysis augmented the results with valuable insights, some of which could not
be found by either distance- or density-based clustering.

HDBSCAN’s clusters are of reasonable quality for an automated method: any expert topics
were also found by HDBSCAN. An advantage of HDBSCAN is its elasticity in producing
differently-sized clusters. Consequently, for exploratory research without expert knowledge,
HDBSCAN is the method to choose. The methodology is therefore applicable in an even
wider range of problems.

However, we showed that expert analysis is a valuable extension of automated clustering.
T-SNE finds intricate structure in the documents, and assigning documents will never be
perfect if the algorithm does not know whether to search for articles concerning the same
geographical area, the same company, the same technology, or the same social issue.
Social and EU-related topics which can be identified with expert analysis were joined
together by HDBSCAN and Gaussian mixtures. The prime example is the right-to-repair
topic in the “Environment, Sustainability & Resilience” umbrella topic, which is focused on
EU and US legislation in different places. Both automatic clustering methods see a fairly
coherent cluster on right-to-repair.

It is necessary to discuss limitations of applicability of the main method. First, the
methodology has been shown to work only on news articles. Social media posts or
comments may have different characteristics and it does not have to be the case that t-SNE
with distance-based clustering delivers the best results. Second, if one wants to find clusters
as coherent as possible, is not worried about losing some articles, or expects the dataset to
be noisy, HDBSCAN’s results on Kuhn-Munkres assignment show that it may be the optimal
algorithm. Third, Gaussian mixtures are not superior in finding small topics: increasing the
number of clusters seems to make clusters in the middle of the chart rather random. This
problem is common with distance-based methods. We mitigate this problem by expert
analysis, while the use of HDBSCAN is another possible solution.

For a deeper understanding of the topics, please read the main deliverable:
https://ngitopics.delabapps.eu/report.pdf.
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Appendix

A1) List of t-SNE settings used
Perplexity averaging:
20, 5, 2
30, 7, 2
35, 8, 3
50, 12, 2
50, 5, 3
70, 10, 4
80, 12, 2
100, 15, 3
100, 20, 2
100, 20, 8, 2
100, 4, 2
150, 30, 6, 2
150, 50, 4
150, 7, 2
200, 40, 3
200, 60, 5
225, 75, 10, 3
250, 100, 5
250, 125, 6
250, 90, 6
300, 150, 10, 2

Perplexity averaging and perplexity annealing:
20, 5
30, 7
35, 8
50, 12
50, 5
70, 10
80, 12
100, 15
100, 20
100, 20
100, 4
150, 30
150, 50
150, 7
200, 40
200, 60
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225, 75
250, 100
250, 125
250, 90
300, 150

Single perplexity:
4
5
7
8
10
12
15
20
30
40
50
60
75
90
100
125
150

A2) List of HDBSCAN settings used
Minimum cluster sizes: 25, 35, 50, 75, 100, 150, 200, 300

Base for epsilon: 0.50, 0.52, 0.54, 0.56, 0.58, 0.60, 0.62, 0.64, 0.66, 0.68, 0.70, 0.72, 0.74,
0.76, 0.78, 0.80, 0.82, 0.84, 0.86, 0.88, 0.90, 0.92, 0.94, 0.96, 0.98, 1.00, 1.02, 1.04, 1.06,
1.08, 1.10, 1.12, 1.14, 1.16, 1.18, 1.20, 1.22, 1.24, 1.26, 1.28, 1.40, 1.80, 2.20, 2.60, 3.00,
3.40, 3.80, 4.20, 4.60, 5.00, 5.40, 5.80, 6.20, 6.60, 7.00, 7.40, 7.80

Epsilons for iterations:
0 - 0.4533, 0.4715, 0.4896, 0.5077, 0.5259, 0.5440, 0.5621, 0.5803, 0.5984, 0.6165, 0.6347,
0.6528, 0.6709, 0.6891, 0.7072, 0.7253, 0.7435, 0.7616, 0.7797, 0.7979, 0.8160, 0.8341,
0.8523, 0.8704, 0.8885, 0.9067, 0.9248, 0.9429, 0.9611, 0.9792, 0.9973, 1.0155, 1.0336,
1.0517, 1.0699, 1.0880, 1.1061, 1.1243, 1.1424, 1.1605, 1.2693, 1.6320, 1.9947, 2.3573,
2.7200, 3.0827, 3.4453, 3.8080, 4.1707, 4.5333, 4.8960, 5.2587, 5.6213, 5.9840, 6.3467,
6.7093, 7.0720
1 - 0.4600, 0.4784, 0.4968, 0.5152, 0.5336, 0.5520, 0.5704, 0.5888, 0.6072, 0.6256, 0.6440,
0.6624, 0.6808, 0.6992, 0.7176, 0.7360, 0.7544, 0.7728, 0.7912, 0.8096, 0.8280, 0.8464,
0.8648, 0.8832, 0.9016, 0.9200, 0.9384, 0.9568, 0.9752, 0.9936, 1.0120, 1.0304, 1.0488,
1.0672, 1.0856, 1.1040, 1.1224, 1.1408, 1.1592, 1.1776, 1.2880, 1.6560, 2.0240, 2.3920,
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2.7600, 3.1280, 3.4960, 3.8640, 4.2320, 4.6000, 4.9680, 5.3360, 5.7040, 6.0720, 6.4400,
6.8080, 7.1760
2 - 0.4667, 0.4853, 0.5040, 0.5227, 0.5413, 0.5600, 0.5787, 0.5973, 0.6160, 0.6347, 0.6533,
0.6720, 0.6907, 0.7093, 0.7280, 0.7467, 0.7653, 0.7840, 0.8027, 0.8213, 0.8400, 0.8587,
0.8773, 0.8960, 0.9147, 0.9333, 0.9520, 0.9707, 0.9893, 1.0080, 1.0267, 1.0453, 1.0640,
1.0827, 1.1013, 1.1200, 1.1387, 1.1573, 1.1760, 1.1947, 1.3067, 1.6800, 2.0533, 2.4267,
2.8000, 3.1733, 3.5467, 3.9200, 4.2933, 4.6667, 5.0400, 5.4133, 5.7867, 6.1600, 6.5333,
6.9067, 7.2800
3 - 0.4733, 0.4923, 0.5112, 0.5301, 0.5491, 0.5680, 0.5869, 0.6059, 0.6248, 0.6437, 0.6627,
0.6816, 0.7005, 0.7195, 0.7384, 0.7573, 0.7763, 0.7952, 0.8141, 0.8331, 0.8520, 0.8709,
0.8899, 0.9088, 0.9277, 0.9467, 0.9656, 0.9845, 1.0035, 1.0224, 1.0413, 1.0603, 1.0792,
1.0981, 1.1171, 1.1360, 1.1549, 1.1739, 1.1928, 1.2117, 1.3253, 1.7040, 2.0827, 2.4613,
2.8400, 3.2187, 3.5973, 3.9760, 4.3547, 4.7333, 5.1120, 5.4907, 5.8693, 6.2480, 6.6267,
7.0053, 7.3840
4 - 0.4800, 0.4992, 0.5184, 0.5376, 0.5568, 0.5760, 0.5952, 0.6144, 0.6336, 0.6528, 0.6720,
0.6912, 0.7104, 0.7296, 0.7488, 0.7680, 0.7872, 0.8064, 0.8256, 0.8448, 0.8640, 0.8832,
0.9024, 0.9216, 0.9408, 0.9600, 0.9792, 0.9984, 1.0176, 1.0368, 1.0560, 1.0752, 1.0944,
1.1136, 1.1328, 1.1520, 1.1712, 1.1904, 1.2096, 1.2288, 1.3440, 1.7280, 2.1120, 2.4960,
2.8800, 3.2640, 3.6480, 4.0320, 4.4160, 4.8000, 5.1840, 5.5680, 5.9520, 6.3360, 6.7200,
7.1040, 7.4880
5 - 0.4867, 0.5061, 0.5256, 0.5451, 0.5645, 0.5840, 0.6035, 0.6229, 0.6424, 0.6619, 0.6813,
0.7008, 0.7203, 0.7397, 0.7592, 0.7787, 0.7981, 0.8176, 0.8371, 0.8565, 0.8760, 0.8955,
0.9149, 0.9344, 0.9539, 0.9733, 0.9928, 1.0123, 1.0317, 1.0512, 1.0707, 1.0901, 1.1096,
1.1291, 1.1485, 1.1680, 1.1875, 1.2069, 1.2264, 1.2459, 1.3627, 1.7520, 2.1413, 2.5307,
2.9200, 3.3093, 3.6987, 4.0880, 4.4773, 4.8667, 5.2560, 5.6453, 6.0347, 6.4240, 6.8133,
7.2027, 7.5920
6 - 0.4933, 0.5131, 0.5328, 0.5525, 0.5723, 0.5920, 0.6117, 0.6315, 0.6512, 0.6709, 0.6907,
0.7104, 0.7301, 0.7499, 0.7696, 0.7893, 0.8091, 0.8288, 0.8485, 0.8683, 0.8880, 0.9077,
0.9275, 0.9472, 0.9669, 0.9867, 1.0064, 1.0261, 1.0459, 1.0656, 1.0853, 1.1051, 1.1248,
1.1445, 1.1643, 1.1840, 1.2037, 1.2235, 1.2432, 1.2629, 1.3813, 1.7760, 2.1707, 2.5653,
2.9600, 3.3547, 3.7493, 4.1440, 4.5387, 4.9333, 5.3280, 5.7227, 6.1173, 6.5120, 6.9067,
7.3013, 7.6960
7 - 0.5000, 0.5200, 0.5400, 0.5600, 0.5800, 0.6000, 0.6200, 0.6400, 0.6600, 0.6800, 0.7000,
0.7200, 0.7400, 0.7600, 0.7800, 0.8000, 0.8200, 0.8400, 0.8600, 0.8800, 0.9000, 0.9200,
0.9400, 0.9600, 0.9800, 1.0000, 1.0200, 1.0400, 1.0600, 1.0800, 1.1000, 1.1200, 1.1400,
1.1600, 1.1800, 1.2000, 1.2200, 1.2400, 1.2600, 1.2800, 1.4000, 1.8000, 2.2000, 2.6000,
3.0000, 3.4000, 3.8000, 4.2000, 4.6000, 5.0000, 5.4000, 5.8000, 6.2000, 6.6000, 7.0000,
7.4000, 7.8000
8 - 0.5067, 0.5269, 0.5472, 0.5675, 0.5877, 0.6080, 0.6283, 0.6485, 0.6688, 0.6891, 0.7093,
0.7296, 0.7499, 0.7701, 0.7904, 0.8107, 0.8309, 0.8512, 0.8715, 0.8917, 0.9120, 0.9323,
0.9525, 0.9728, 0.9931, 1.0133, 1.0336, 1.0539, 1.0741, 1.0944, 1.1147, 1.1349, 1.1552,
1.1755, 1.1957, 1.2160, 1.2363, 1.2565, 1.2768, 1.2971, 1.4187, 1.8240, 2.2293, 2.6347,
3.0400, 3.4453, 3.8507, 4.2560, 4.6613, 5.0667, 5.4720, 5.8773, 6.2827, 6.6880, 7.0933,
7.4987, 7.9040
9 - 0.5133, 0.5339, 0.5544, 0.5749, 0.5955, 0.6160, 0.6365, 0.6571, 0.6776, 0.6981, 0.7187,
0.7392, 0.7597, 0.7803, 0.8008, 0.8213, 0.8419, 0.8624, 0.8829, 0.9035, 0.9240, 0.9445,
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0.9651, 0.9856, 1.0061, 1.0267, 1.0472, 1.0677, 1.0883, 1.1088, 1.1293, 1.1499, 1.1704,
1.1909, 1.2115, 1.2320, 1.2525, 1.2731, 1.2936, 1.3141, 1.4373, 1.8480, 2.2587, 2.6693,
3.0800, 3.4907, 3.9013, 4.3120, 4.7227, 5.1333, 5.5440, 5.9547, 6.3653, 6.7760, 7.1867,
7.5973, 8.0080
10 - 0.5200, 0.5408, 0.5616, 0.5824, 0.6032, 0.6240, 0.6448, 0.6656, 0.6864, 0.7072,
0.7280, 0.7488, 0.7696, 0.7904, 0.8112, 0.8320, 0.8528, 0.8736, 0.8944, 0.9152, 0.9360,
0.9568, 0.9776, 0.9984, 1.0192, 1.0400, 1.0608, 1.0816, 1.1024, 1.1232, 1.1440, 1.1648,
1.1856, 1.2064, 1.2272, 1.2480, 1.2688, 1.2896, 1.3104, 1.3312, 1.4560, 1.8720, 2.2880,
2.7040, 3.1200, 3.5360, 3.9520, 4.3680, 4.7840, 5.2000, 5.6160, 6.0320, 6.4480, 6.8640,
7.2800, 7.6960, 8.1120
11 - 0.5267, 0.5477, 0.5688, 0.5899, 0.6109, 0.6320, 0.6531, 0.6741, 0.6952, 0.7163,
0.7373, 0.7584, 0.7795, 0.8005, 0.8216, 0.8427, 0.8637, 0.8848, 0.9059, 0.9269, 0.9480,
0.9691, 0.9901, 1.0112, 1.0323, 1.0533, 1.0744, 1.0955, 1.1165, 1.1376, 1.1587, 1.1797,
1.2008, 1.2219, 1.2429, 1.2640, 1.2851, 1.3061, 1.3272, 1.3483, 1.4747, 1.8960, 2.3173,
2.7387, 3.1600, 3.5813, 4.0027, 4.4240, 4.8453, 5.2667, 5.6880, 6.1093, 6.5307, 6.9520,
7.3733, 7.7947, 8.2160
12 - 0.5333, 0.5547, 0.5760, 0.5973, 0.6187, 0.6400, 0.6613, 0.6827, 0.7040, 0.7253,
0.7467, 0.7680, 0.7893, 0.8107, 0.8320, 0.8533, 0.8747, 0.8960, 0.9173, 0.9387, 0.9600,
0.9813, 1.0027, 1.0240, 1.0453, 1.0667, 1.0880, 1.1093, 1.1307, 1.1520, 1.1733, 1.1947,
1.2160, 1.2373, 1.2587, 1.2800, 1.3013, 1.3227, 1.3440, 1.3653, 1.4933, 1.9200, 2.3467,
2.7733, 3.2000, 3.6267, 4.0533, 4.4800, 4.9067, 5.3333, 5.7600, 6.1867, 6.6133, 7.0400,
7.4667, 7.8933, 8.3200
13 - 0.5400, 0.5616, 0.5832, 0.6048, 0.6264, 0.6480, 0.6696, 0.6912, 0.7128, 0.7344,
0.7560, 0.7776, 0.7992, 0.8208, 0.8424, 0.8640, 0.8856, 0.9072, 0.9288, 0.9504, 0.9720,
0.9936, 1.0152, 1.0368, 1.0584, 1.0800, 1.1016, 1.1232, 1.1448, 1.1664, 1.1880, 1.2096,
1.2312, 1.2528, 1.2744, 1.2960, 1.3176, 1.3392, 1.3608, 1.3824, 1.5120, 1.9440, 2.3760,
2.8080, 3.2400, 3.6720, 4.1040, 4.5360, 4.9680, 5.4000, 5.8320, 6.2640, 6.6960, 7.1280,
7.5600, 7.9920, 8.4240
14 - 0.5467, 0.5685, 0.5904, 0.6123, 0.6341, 0.6560, 0.6779, 0.6997, 0.7216, 0.7435,
0.7653, 0.7872, 0.8091, 0.8309, 0.8528, 0.8747, 0.8965, 0.9184, 0.9403, 0.9621, 0.9840,
1.0059, 1.0277, 1.0496, 1.0715, 1.0933, 1.1152, 1.1371, 1.1589, 1.1808, 1.2027, 1.2245,
1.2464, 1.2683, 1.2901, 1.3120, 1.3339, 1.3557, 1.3776, 1.3995, 1.5307, 1.9680, 2.4053,
2.8427, 3.2800, 3.7173, 4.1547, 4.5920, 5.0293, 5.4667, 5.9040, 6.3413, 6.7787, 7.2160,
7.6533, 8.0907, 8.5280

A3) Best mean results of particular methods on a given dataset,
ranks 6-9

ranking 6 ranking 7 ranking 8 ranking 9
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Kuhn-Munkres
micro-averaged

precision

t-SNE
k-means
(0.2583)

PA k-means
(0.2372)

LDA k-means
(0.2336)

doc2vec
(0.2244)

maximum
micro-averaged

precision

LDA naive
(0.7622)

LDA k-means
(0.7613)

PA k-means
(0.7595)

doc2vec
(0.7456)

Kuhn-Munkres
macro-averaged

precision

LDA k-means
(0.2358)

LDA naive
(0.2299)

PA naive
(0.2288)

doc2vec
(0.21)

maximum
macro-averaged

precision

LDA k-means
(0.1955)

PA naive
(0.1776)

LDA naive
(0.173)

doc2vec
(0.1666)

Kuhn-Munkres
weighted precision

PA k-means
(0.8083)

doc2vec
(0.799)

LDA naive
(0.7987)

PA naive
(0.7968)

maximum weighted
precision

LDA naive
(0.7145)

PA k-means
(0.7134)

LDA k-means
(0.7111)

doc2vec
(0.7026)

Kuhn-Munkres NMI LDA naive
(0.4939)

PA k-means
(0.4752)

LDA k-means
(0.4731)

doc2vec
(0.4561)

maximum NMI LDA naive
(0.597)

doc2vec
(0.5969)

LDA k-means
(0.5941)

PA k-means
(0.5926)

Kuhn-Munkres ARI LDA k-means
(0.1197)

t-SNE
Gaussian
(0.1165)

t-SNE k-means
(0.1077)

doc2vec
(0.0977)

maximum ARI LDA k-means
(0.757)

PA k-means
(0.7481)

t-SNE
HDBSCAN
(0.7338)

doc2vec
(0.729)

B1) Maximum micro-averaged precision best results

Perplexity Perplexity
type

cluster mean std
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Model

t-SNE 60 single Gaussian
mixtures

0.804507 0.005970

SVD
normalized

NA NA Gaussian
mixtures

0.804251 0.008359

SVD
normalized

NA NA k-means 0.803489 0.008900

t-SNE 75 single k-means 0.802866 0.003410

t-SNE 60 single k-means 0.802272 0.003371

t-SNE 50 single k-means 0.801693 0.003341

t-SNE 300-150 annealing Gaussian
mixtures

0.801327 0.004091

t-SNE 40 single Gaussian
mixtures

0.801246 0.006061

t-SNE 90 single k-means 0.801019 0.003934

t-SNE 200-60 annealing Gaussian
mixtures

0.800799 0.005368

t-SNE 200-60 annealing k-means 0.800762 0.004690

t-SNE 40 single k-means 0.800704 0.006289

t-SNE 300-150 annealing k-means 0.800037 0.005258

t-SNE 250-90 annealing Gaussian
mixtures

0.799927 0.006190

t-SNE 90 single Gaussian
mixtures

0.799751 0.004371

t-SNE 150-30 averaging Gaussian
mixtures

0.799230 0.005435

t-SNE 250-125 annealing k-means 0.798945 0.003732

t-SNE 100-20 averaging k-means 0.798373 0.006318
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t-SNE 100-20 averaging k-means 0.798373 0.006318

t-SNE 200-40 annealing Gaussian
mixtures

0.798094 0.005853

t-SNE 250-100 annealing Gaussian
mixtures

0.797911 0.006077

t-SNE 50 single Gaussian
mixtures

0.797897 0.003322

t-SNE 75 single Gaussian
mixtures

0.797596 0.003624

t-SNE 150-30 averaging k-means 0.797596 0.004420

t-SNE 250-100 annealing k-means 0.797332 0.005361

B2) Maximum macro-averaged precision best results

Perplexity Perplexity type cluster mcs mean std

Model

t-SNE 150-7 averaging HDBSCAN 25.0 0.330174 0.029620

t-SNE 100-15 averaging HDBSCAN 25.0 0.329363 0.022969

t-SNE 50-12 annealing HDBSCAN 25.0 0.327625 0.012410

t-SNE 100 single HDBSCAN 25.0 0.326334 0.000000

t-SNE 20 single HDBSCAN 25.0 0.320762 0.023015

t-SNE 20 single HDBSCAN 25.0 0.320762 0.023015

t-SNE 30 single HDBSCAN 25.0 0.317041 0.036898

t-SNE 35-8 averaging HDBSCAN 25.0 0.315521 0.031352

t-SNE 250-90-6 averaging HDBSCAN 25.0 0.314879 0.044507

t-SNE 15 single HDBSCAN 25.0 0.313909 0.017966

t-SNE 200-40 averaging HDBSCAN 25.0 0.313537 0.024341
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t-SNE 150-30 averaging HDBSCAN 25.0 0.311942 0.032132

t-SNE 70-10 annealing HDBSCAN 25.0 0.311173 0.030490

t-SNE 40 single HDBSCAN 25.0 0.309488 0.000000

t-SNE 100-20 annealing HDBSCAN 25.0 0.306497 0.030375

t-SNE 100-20 annealing HDBSCAN 25.0 0.306497 0.030375

t-SNE 70-10 averaging HDBSCAN 25.0 0.303497 0.000000

t-SNE 50 single HDBSCAN 25.0 0.302998 0.000000

t-SNE 250-100 annealing HDBSCAN 25.0 0.302227 0.001223

t-SNE 80-12 averaging HDBSCAN 25.0 0.301348 0.013480

t-SNE 150-50 averaging HDBSCAN 25.0 0.300281 0.021161

t-SNE 30-7 averaging HDBSCAN 25.0 0.299624 0.016194

t-SNE 150-50-4 averaging HDBSCAN 25.0 0.299623 0.015519

t-SNE 225-75 annealing HDBSCAN 25.0 0.298815 0.015207

t-SNE 225-75-10-3 averaging HDBSCAN 25.0 0.298184 0.000000

B3) Maximum weighted precision best results

Perplexity Perplexity
type

cluster mcs mean std

Model

SVD
normalized

NA NA k-means NA 0.775173 0.017024

SVD
normalized

NA NA Gaussian
mixtures

NA 0.768901 0.019268

t-SNE 60 single Gaussian
mixtures

NA 0.765803 0.013276
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t-SNE 50 single Gaussian
mixtures

NA 0.764776 0.013304

t-SNE 50 single k-means NA 0.764653 0.008167

t-SNE 75 single Gaussian
mixtures

NA 0.762829 0.012875

t-SNE 150-50 averaging Gaussian
mixtures

NA 0.761485 0.013218

tf-idf matrix NA NA k-means NA 0.761381 0.019948

t-SNE 60 single k-means NA 0.760412 0.009433

t-SNE 150-30 annealing k-means NA 0.759555 0.007060

t-SNE 90 single Gaussian
mixtures

NA 0.759366 0.011288

t-SNE 100 single Gaussian
mixtures

NA 0.759190 0.009210

t-SNE 90 single k-means NA 0.758761 0.006589

t-SNE 100 single HDBSCAN 25.0 0.758202 0.000000

t-SNE 50 single HDBSCAN 25.0 0.758092 0.000000

t-SNE 75 single k-means NA 0.757993 0.008723

t-SNE 60 single HDBSCAN 25.0 0.757683 0.000000

t-SNE 75 single HDBSCAN 25.0 0.756831 0.000000

t-SNE 100 single k-means NA 0.755973 0.009590

t-SNE 20 single Gaussian
mixtures

NA 0.755224 0.010378

t-SNE 20 single Gaussian
mixtures

NA 0.755224 0.010378

t-SNE 35-8 averaging Gaussian
mixtures

NA 0.754605 0.013486

t-SNE 150-50 annealing k-means NA 0.754390 0.008242
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SVD not
normalized

NA NA Gaussian
mixtures

NA 0.754281 0.026813

t-SNE 200-60 annealing k-means NA 0.752781 0.012513

B4) Maximum NMI best results

Perplexity Perplexity type cluster mean std

Model

t-SNE 50 single k-means 0.695013 0.007431

t-SNE 60 single Gaussian mixtures 0.692948 0.011142

t-SNE 75 single k-means 0.690748 0.005370

t-SNE 60 single k-means 0.690212 0.005230

t-SNE 50 single Gaussian mixtures 0.689442 0.005638

t-SNE 90 single Gaussian mixtures 0.688823 0.011250

t-SNE 90 single k-means 0.687933 0.005673

t-SNE 75 single Gaussian mixtures 0.687590 0.006557

t-SNE 200-60 annealing Gaussian mixtures 0.684648 0.008243

t-SNE 200-60 annealing k-means 0.684288 0.009258

t-SNE 200-40 annealing Gaussian mixtures 0.682986 0.008830

t-SNE 150-50 annealing Gaussian mixtures 0.681838 0.007070

t-SNE 40 single Gaussian mixtures 0.681113 0.007689
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t-SNE 100 single k-means 0.680928 0.006984

t-SNE 250-125 annealing Gaussian mixtures 0.680762 0.011050

t-SNE 150-50 annealing k-means 0.680555 0.007252

t-SNE 150-30 annealing Gaussian mixtures 0.680543 0.006278

t-SNE 100 single Gaussian mixtures 0.680523 0.007599

t-SNE 40 single k-means 0.680289 0.009119

t-SNE 150-30 averaging Gaussian mixtures 0.680173 0.010475

t-SNE 150-30 annealing k-means 0.680111 0.006175

t-SNE 250-90 annealing Gaussian mixtures 0.679263 0.010219

t-SNE 125 single k-means 0.679153 0.008537

t-SNE 250-100 annealing Gaussian mixtures 0.678453 0.007122

t-SNE 30 single Gaussian mixtures 0.677841 0.009716

B5) Maximum ARI best results

Perplexity Perplexity type cluster mean std

Model

t-SNE 60 single Gaussian mixtures 0.826931 0.015148

t-SNE 90 single k-means 0.824371 0.010343

t-SNE 75 single k-means 0.823584 0.007872

t-SNE 50 single k-means 0.822905 0.013291

43



t-SNE 150-30 annealing k-means 0.822256 0.008979

t-SNE 60 single k-means 0.821138 0.013017

t-SNE 75 single Gaussian mixtures 0.820402 0.011922

t-SNE 150-50 annealing Gaussian mixtures 0.819669 0.008746

t-SNE 90 single Gaussian mixtures 0.819243 0.018460

t-SNE 50 single Gaussian mixtures 0.818436 0.008908

t-SNE 150-50 annealing k-means 0.818307 0.006914

t-SNE 100 single k-means 0.817261 0.014939

t-SNE 250-125 annealing Gaussian mixtures 0.816370 0.020426

t-SNE 150-30 annealing Gaussian mixtures 0.815591 0.012543

t-SNE 200-60 annealing k-means 0.815262 0.017707

t-SNE 125 single k-means 0.813680 0.017669

t-SNE 150-50 averaging Gaussian mixtures 0.813631 0.018191

t-SNE 250-125 annealing k-means 0.813623 0.016584

t-SNE 250-100 annealing Gaussian mixtures 0.813507 0.014151

t-SNE 200-60 annealing Gaussian mixtures 0.811896 0.013389

t-SNE 250-90 annealing Gaussian mixtures 0.811007 0.019160

t-SNE 200-40 annealing Gaussian mixtures 0.810395 0.018925
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t-SNE 100-4 averaging Gaussian mixtures 0.809963 0.012210

t-SNE 250-90 annealing k-means 0.809094 0.015409

t-SNE 80-12 averaging Gaussian mixtures 0.809012 0.016266

B6) Kuhn-Munkres micro-averaged precision best results

Perplexity Perplexity type cluster mcs mean std

Model

t-SNE 75 single HDBSCAN 35.0 0.562335 0.0

t-SNE 250-100 averaging HDBSCAN 50.0 0.549582 0.0

t-SNE 50 single HDBSCAN 25.0 0.540897 0.0

t-SNE 50 single HDBSCAN 35.0 0.540787 0.0

t-SNE 75 single HDBSCAN 25.0 0.534850 0.0

t-SNE 250-100 averaging HDBSCAN 25.0 0.534081 0.0

t-SNE 250-125 averaging HDBSCAN 25.0 0.533531 0.0

t-SNE 30 single HDBSCAN 35.0 0.524736 0.0

t-SNE 60 single HDBSCAN 25.0 0.523087 0.0

t-SNE 225-75 averaging HDBSCAN 75.0 0.522977 0.0

t-SNE 100-20 averaging HDBSCAN 35.0 0.521878 0.0

t-SNE 100-20 averaging HDBSCAN 35.0 0.521878 0.0

t-SNE 40 single HDBSCAN 25.0 0.519349 0.0

t-SNE 300-150 averaging HDBSCAN 35.0 0.515831 0.0

t-SNE 50 single HDBSCAN 50.0 0.515391 0.0

t-SNE 100 single HDBSCAN 25.0 0.513522 0.0
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t-SNE 50-12 averaging HDBSCAN 35.0 0.512863 0.0

t-SNE 40 single HDBSCAN 50.0 0.512533 0.0

t-SNE 80-12 averaging HDBSCAN 35.0 0.510884 0.0

t-SNE 300-150 averaging HDBSCAN 25.0 0.507256 0.0

t-SNE 100-20 averaging HDBSCAN 25.0 0.504947 0.0

t-SNE 100-20 averaging HDBSCAN 25.0 0.504947 0.0

t-SNE 40 single HDBSCAN 75.0 0.504837 0.0

t-SNE 40 single HDBSCAN 35.0 0.502419 0.0

t-SNE 90 single HDBSCAN 75.0 0.501979 0.0

B7) Kuhn-Munkres macro-averaged precision best results

Perplexity Perplexity type cluster mcs mean std

Model

t-SNE 100 single HDBSCAN 25.0 0.353638 0.000000

t-SNE 50-12 annealing HDBSCAN 25.0 0.346667 0.017948

t-SNE 20 single HDBSCAN 25.0 0.345503 0.024718

t-SNE 20 single HDBSCAN 25.0 0.345503 0.024718

t-SNE 150-7 averaging HDBSCAN 25.0 0.343053 0.033991

t-SNE 100-15 averaging HDBSCAN 25.0 0.342669 0.026348

t-SNE 70-10 averaging HDBSCAN 25.0 0.335763 0.000000

t-SNE 30 single HDBSCAN 25.0 0.334917 0.034973

t-SNE 200-40 averaging HDBSCAN 25.0 0.333955 0.033915

t-SNE 15 single HDBSCAN 25.0 0.333735 0.027614

t-SNE 35-8 averaging HDBSCAN 25.0 0.331125 0.036756
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t-SNE 250-90-6 averaging HDBSCAN 25.0 0.327998 0.046383

t-SNE 100-20 annealing HDBSCAN 25.0 0.326345 0.024363

t-SNE 100-20 annealing HDBSCAN 25.0 0.326345 0.024363

t-SNE 150-30 averaging HDBSCAN 25.0 0.325770 0.039422

t-SNE 80-12 averaging HDBSCAN 25.0 0.323727 0.018454

t-SNE 50 single HDBSCAN 25.0 0.323650 0.000000

t-SNE 70-10 annealing HDBSCAN 25.0 0.323485 0.038721

t-SNE 30-7 averaging HDBSCAN 25.0 0.322784 0.024317

t-SNE 40 single HDBSCAN 25.0 0.321582 0.000000

t-SNE 75 single HDBSCAN 25.0 0.317318 0.000000

t-SNE 225-75-10-3 averaging HDBSCAN 25.0 0.314969 0.000000

t-SNE 150-50 averaging HDBSCAN 25.0 0.314573 0.026473

t-SNE 150-50-4 averaging HDBSCAN 25.0 0.313178 0.022592

t-SNE 12 single HDBSCAN 25.0 0.313005 0.024140

B8) Kuhn-Munkres weighted precision best results

Perplexity Perplexity
type

cluster mcs mean std

Model

SVD
normalized

NA NA k-means NA 0.827975 0.021280

t-SNE 300-150 averaging HDBSCAN 25.0 0.827948 0.000000

t-SNE 300-150 averaging HDBSCAN 35.0 0.826081 0.000000

t-SNE 200-60 averaging HDBSCAN 35.0 0.825571 0.000000
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tf-idf matrix NA NA k-means NA 0.825125 0.015904

t-SNE 225-75 averaging HDBSCAN 50.0 0.824518 0.000000

SVD
normalized

NA NA Gaussian
mixtures

NA 0.821422 0.019352

t-SNE 100-15 averaging k-means NA 0.818445 0.011364

t-SNE 100-20 averaging Gaussian
mixtures

NA 0.816885 0.009627

t-SNE 100-20 averaging Gaussian
mixtures

NA 0.816885 0.009627

t-SNE 100 single Gaussian
mixtures

NA 0.815826 0.017304

t-SNE 40 single Gaussian
mixtures

NA 0.814985 0.007961

t-SNE 300-150 averaging HDBSCAN 50.0 0.814542 0.000000

t-SNE 60 single Gaussian
mixtures

NA 0.814384 0.011030

t-SNE 150-30 averaging Gaussian
mixtures

NA 0.813539 0.011629

t-SNE 150-30 annealing k-means NA 0.813290 0.016845

t-SNE 15 single Gaussian
mixtures

NA 0.812789 0.009558

t-SNE 75 single Gaussian
mixtures

NA 0.811897 0.014369

t-SNE 70-10 averaging Gaussian
mixtures

NA 0.811855 0.004084

t-SNE 30-7 averaging k-means NA 0.811624 0.010518

t-SNE 75 single k-means NA 0.811179 0.019432

t-SNE 250-100 averaging HDBSCAN 25.0 0.811058 0.000000
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t-SNE 50 single Gaussian
mixtures

NA 0.810942 0.015268

t-SNE 150-30-6-2 averaging k-means NA 0.810886 0.019375

t-SNE 150-30 averaging k-means NA 0.810499 0.017312

B9) Kuhn-Munkres NMI best results

Perplexity Perplexity
type

cluster mcs mean std

Model

t-SNE 60 single HDBSCAN 25.0 0.564408 0.000000

t-SNE 50 single HDBSCAN 25.0 0.560827 0.000000

t-SNE 250-125 averaging HDBSCAN 25.0 0.560082 0.000000

t-SNE 75 single HDBSCAN 35.0 0.559601 0.000000

t-SNE 40 single HDBSCAN 25.0 0.558308 0.000000

t-SNE 50 single HDBSCAN 35.0 0.558144 0.000000

t-SNE 250-100 averaging HDBSCAN 25.0 0.557944 0.000000

t-SNE 75 single HDBSCAN 25.0 0.556198 0.000000

t-SNE 30 single HDBSCAN 35.0 0.539546 0.000000

t-SNE 100 single HDBSCAN 25.0 0.537292 0.000000

t-SNE 100-20 averaging HDBSCAN 25.0 0.536934 0.000000

t-SNE 100-20 averaging HDBSCAN 25.0 0.536934 0.000000

t-SNE 300-150 averaging HDBSCAN 25.0 0.536169 0.000000

t-SNE 300-150 averaging HDBSCAN 35.0 0.531442 0.000000

t-SNE 50 single HDBSCAN 50.0 0.529693 0.000000

t-SNE 40 single HDBSCAN 35.0 0.527512 0.000000
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t-SNE 50-12 averaging HDBSCAN 35.0 0.525750 0.000000

t-SNE 60 single Gaussian
mixtures

NA 0.523640 0.005619

t-SNE 50 single k-means NA 0.523269 0.003319

SVD
normalized

NA NA k-means NA 0.522633 0.008725

SVD
normalized

NA NA Gaussian
mixtures

NA 0.522323 0.007642

t-SNE 75 single k-means NA 0.522228 0.004319

t-SNE 100 single Gaussian
mixtures

NA 0.522147 0.004452

t-SNE 90 single Gaussian
mixtures

NA 0.521334 0.004038

t-SNE 200-60 annealing Gaussian
mixtures

NA 0.521188 0.003967

B10) Kuhn-Munkres ARI best results

Perplexity Perplexity type cluster mcs mean std

Model

t-SNE 250-100 averaging HDBSCAN 25.0 0.418811 0.0

t-SNE 250-125 averaging HDBSCAN 25.0 0.415144 0.0

t-SNE 50 single HDBSCAN 25.0 0.412470 0.0

t-SNE 75 single HDBSCAN 35.0 0.407422 0.0

t-SNE 60 single HDBSCAN 25.0 0.406951 0.0

t-SNE 40 single HDBSCAN 25.0 0.402764 0.0

t-SNE 75 single HDBSCAN 25.0 0.402475 0.0

t-SNE 50 single HDBSCAN 35.0 0.401511 0.0
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t-SNE 30 single HDBSCAN 35.0 0.378636 0.0

t-SNE 250-100 averaging HDBSCAN 50.0 0.377726 0.0

t-SNE 300-150 averaging HDBSCAN 25.0 0.377002 0.0

t-SNE 100-20 averaging HDBSCAN 25.0 0.374710 0.0

t-SNE 100-20 averaging HDBSCAN 25.0 0.374710 0.0

t-SNE 100 single HDBSCAN 25.0 0.367851 0.0

t-SNE 50 single HDBSCAN 50.0 0.359032 0.0

t-SNE 50-12 averaging HDBSCAN 35.0 0.355219 0.0

t-SNE 300-150 averaging HDBSCAN 35.0 0.353165 0.0

t-SNE 225-75 averaging HDBSCAN 50.0 0.326720 0.0

t-SNE 40 single HDBSCAN 35.0 0.325489 0.0

t-SNE 90 single HDBSCAN 75.0 0.321256 0.0

t-SNE 80-12 averaging HDBSCAN 100.0 0.307561 0.0

t-SNE 225-75 averaging HDBSCAN 75.0 0.293882 0.0

t-SNE 40 single HDBSCAN 50.0 0.292487 0.0

t-SNE 300-150 averaging HDBSCAN 50.0 0.287054 0.0

t-SNE 100-20 averaging HDBSCAN 35.0 0.285752 0.0

C1) Maximum NMI best HDBSCAM results

Perplexity Perplexity type cluster mcs mean std

Model

t-SNE 60 single HDBSCAN 25.0 0.655631 0.0

t-SNE 50 single HDBSCAN 25.0 0.651769 0.0
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t-SNE 75 single HDBSCAN 25.0 0.645279 0.0

t-SNE 40 single HDBSCAN 25.0 0.638656 0.0

t-SNE 75 single HDBSCAN 35.0 0.631991 0.0

t-SNE 50 single HDBSCAN 35.0 0.628128 0.0

t-SNE 100 single HDBSCAN 25.0 0.623089 0.0

t-SNE 30 single HDBSCAN 35.0 0.616189 0.0

t-SNE 100-20 averaging HDBSCAN 25.0 0.611815 0.0

t-SNE 100-20 averaging HDBSCAN 25.0 0.611815 0.0

t-SNE 250-125 averaging HDBSCAN 25.0 0.607633 0.0

t-SNE 250-100 averaging HDBSCAN 25.0 0.606155 0.0

t-SNE 40 single HDBSCAN 35.0 0.595714 0.0

t-SNE 50 single HDBSCAN 50.0 0.590357 0.0

t-SNE 300-150 averaging HDBSCAN 25.0 0.587003 0.0

t-SNE 50-12 averaging HDBSCAN 35.0 0.586804 0.0

t-SNE 300-150 averaging HDBSCAN 35.0 0.576430 0.0

t-SNE 100-20 averaging HDBSCAN 35.0 0.575066 0.0

t-SNE 100-20 averaging HDBSCAN 35.0 0.575066 0.0

t-SNE 70-10 averaging HDBSCAN 25.0 0.574377 0.0

t-SNE 40 single HDBSCAN 50.0 0.566951 0.0

t-SNE 80-12 averaging HDBSCAN 35.0 0.560136 0.0

t-SNE 100-20 annealing HDBSCAN 35.0 0.557253 0.0

t-SNE 100-20 annealing HDBSCAN 35.0 0.557253 0.0

t-SNE 225-75 averaging HDBSCAN 50.0 0.556351 0.0
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C2) Maximum ARI best HDBSCAN results

Perplexity Perplexity type cluster mcs mean std

Model

t-SNE 50 single HDBSCAN 25.0 0.733793 0.0

t-SNE 60 single HDBSCAN 25.0 0.731702 0.0

t-SNE 75 single HDBSCAN 25.0 0.725955 0.0

t-SNE 40 single HDBSCAN 25.0 0.715232 0.0

t-SNE 75 single HDBSCAN 35.0 0.707823 0.0

t-SNE 50 single HDBSCAN 35.0 0.696466 0.0

t-SNE 30 single HDBSCAN 35.0 0.689331 0.0

t-SNE 100-20 averaging HDBSCAN 25.0 0.675514 0.0

t-SNE 100-20 averaging HDBSCAN 25.0 0.675514 0.0

t-SNE 100 single HDBSCAN 25.0 0.673468 0.0

t-SNE 250-100 averaging HDBSCAN 25.0 0.654589 0.0

t-SNE 250-125 averaging HDBSCAN 25.0 0.653152 0.0

t-SNE 40 single HDBSCAN 35.0 0.627007 0.0

t-SNE 50-12 averaging HDBSCAN 35.0 0.622718 0.0

t-SNE 50 single HDBSCAN 50.0 0.620941 0.0

t-SNE 300-150 averaging HDBSCAN 25.0 0.610814 0.0

t-SNE 300-150 averaging HDBSCAN 35.0 0.583779 0.0

t-SNE 40 single HDBSCAN 50.0 0.576030 0.0

t-SNE 100-20 averaging HDBSCAN 35.0 0.561702 0.0

t-SNE 100-20 averaging HDBSCAN 35.0 0.561702 0.0
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t-SNE 100-20 annealing HDBSCAN 35.0 0.545915 0.0

t-SNE 100-20 annealing HDBSCAN 35.0 0.545915 0.0

t-SNE 225-75 averaging HDBSCAN 50.0 0.543483 0.0

t-SNE 90 single HDBSCAN 75.0 0.540687 0.0

t-SNE 80-12 averaging HDBSCAN 35.0 0.538723 0.0
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